22,161 research outputs found

    Can Employees Deduct Meals and Gifts for Co-Workers?

    Get PDF

    Injection locking of optomechanical oscillators via acoustic waves

    Full text link
    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical

    Randomized Algorithms for Tracking Distributed Count, Frequencies, and Ranks

    Full text link
    We show that randomization can lead to significant improvements for a few fundamental problems in distributed tracking. Our basis is the {\em count-tracking} problem, where there are kk players, each holding a counter nin_i that gets incremented over time, and the goal is to track an \eps-approximation of their sum n=∑inin=\sum_i n_i continuously at all times, using minimum communication. While the deterministic communication complexity of the problem is \Theta(k/\eps \cdot \log N), where NN is the final value of nn when the tracking finishes, we show that with randomization, the communication cost can be reduced to \Theta(\sqrt{k}/\eps \cdot \log N). Our algorithm is simple and uses only O(1) space at each player, while the lower bound holds even assuming each player has infinite computing power. Then, we extend our techniques to two related distributed tracking problems: {\em frequency-tracking} and {\em rank-tracking}, and obtain similar improvements over previous deterministic algorithms. Both problems are of central importance in large data monitoring and analysis, and have been extensively studied in the literature.Comment: 19 pages, 1 figur

    A practical approach to managing patients with HCV infection.

    Get PDF
    Hepatitis C virus (HCV) infection is a major worldwide public health concern. It is a common cause of chronic liver disease and hepatocellular carcinoma. HCV antibody and HCV RNA testing are available diagnostic studies that offer high degree of accuracy. Current standard therapy includes a combination of pegylated interferon and ribavirin. Response rate is approximately 40% for genotype 1 and 80% for genotypes 2 and 3, respectively. Successful treatment can stop the progression of chronic liver disease, reduce the need for liver transplantation, and possibly decrease the risk for Hepatocellular carcinoma (HCC). Evaluating for potential treatment candidacy is an important initial step in the management of chronic HCV infection as not all individuals may need or qualify for the treatment. Understanding the natural history, the different diagnostic modalities, the current therapeutic options and, the treatment response and adverse effect profiles can help the practitioners better manage chronic HCV infection
    • …
    corecore